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Abstract 

In this paper, a general algorithm is proposed for evaluating domain integrals in 3D 

boundary element method. These integrals are involved in the solution of transient 

heat conduction problems when using a time-dependent boundary integral equation 

method named as pseudo-initial condition method. Accurate evaluation of domain 

integrals is of great importance to the successful implementation of this method. 

However, as the time-dependent kernel in the domain integral is close to singular 

when small time step is used, a straightforward application of Gaussian quadrature 

may produce large errors, and thus lead to instability of the analysis. To overcome this 

drawback, a coordinate transformation coupled with an element subdivision technique 

is presented. The coordinate transformation makes the integrand of domain integral 

more smooth; meanwhile, the element subdivision technique considers the relations 

between the size of the element and the time step. With the proposed method, more 

Gaussian points are shifted towards the source point, thus more accurate results can be 

obtained. Numerical examples demonstrate that the calculation accuracy of domain 



integrals and the stability of analysis for transient heat conduction problems are 

improved by the proposed algorithm when small time step is used. 

Keywords: domain integrals; stability analysis; transient heat conduction; boundary 

element method; element subdivision technique 

1. Introduction 

The transient heat conduction analysis is widely applied to the practical engineering 

problem. The main numerical methods for the transient heat conduction problem are 

the finite difference method (FDM), the finite element method (FEM) and the 

boundary element method (BEM). Compared to FDM and FEM, the BEM [1-10] is a 

more attractive method to analyze this problem. The BEM using a time-dependent 

fundamental solution for transient heat conduction problem can be classified into two 

schemes. One is the time convolution method and the other is the pseudo-initial 

condition method. Compared to the time convolution method, the pseudo-initial 

condition method is more efficient because no time convolution is required. When 

using the pseudo-initial condition method, the temperature computed in the previous 

step is considered as the initial condition in current step. Thus, the domain integral of 

this pseudo-initial condition is required in this method. 

Although the domain integrals in the pseudo-initial condition method are actually 

regular in nature, they can’t be evaluated accurately and efficiently by the standard 

Gaussian quadrature when small time step is used. This is because as the time step 

decreased progressively, the integrand in the domain integral (the time-dependent 

fundamental solution) varies dramatically near the source point. When the time step 

approaches zero, the time-dependent kernel is close to singular. We may call these 

integrals as pseudo-singular integrals. The difficulty of numerically integrating a 

function with such behavior can introduce numerical unstable problems into the 

solution, as reported in [11-14]. Thus accurate calculation of the domain integrals is 

important to the successful implementation of the pseudo-initial condition method. 

However, much literature focus on the nearly singular integrals [15-20] and singular 

integrals [21-27], and little literature refer to these pseudo-singular domain integrals. 

Gao [28-29] proposed a radial integration method which converted the domain 



integrals into equivalent boundary integrals. This method is not so efficient to solve 

large scale problems. Wrobel et al [30] introduced a semi-analytical integration 

scheme using polar coordinates. Their method is applicable primarily to the 

two-dimensional problems and a linear variation of the potential must be assumed in 

each cell. 

In our method, firstly a coordinate transformation denoted as  , ,    

transformation is introduced. It is an extension of Zhang’s [31]  ,   

transformation. With the coordinate transformation, the integrand in the domain 

integrals are smoothed out, which is advantageous for the numerical calculation of the 

pseudo-singular domain integrals. Furthermore, an element subdivision technique is 

proposed considering the position of the source point, the shape of the element, the 

property of the time-dependent fundamental solution and the relations between the 

size of the element and the time step. With the element subdivision technique, 

integration elements are divided into several pyramidal and hexahedral patches. The 

domain integrals on the pyramidal patches have a large impact on the whole integrals, 

and thus we focus on these integrals on pyramidal patches. In our numerical 

implementation, the  , ,    transformation is applied on pyramidal patches. Using 

the coordinate transformation, the integrands of domain integrals which vary 

drastically can be accurately calculated by our method even if the time step is very 

small. And for hexahedral patches, the standard Gaussian quadrature is employed. 

Numerical examples are presented to verify our method. Results demonstrate the 

accuracy and efficiency of our method. 

This paper is organized as follows. In section 2, the boundary integral equation and 

the domain integral are described. Section 3 introduces the  , ,    transformation 

and the element subdivision technique. Numerical examples are given in Section 4. 

The paper ends with conclusions in Section 5. 

2. General description 

2.1 The boundary integral equation 

In this section, we discuss BEM solutions for the three-dimensional diffusion equation 
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The boundary integral equation for transient heat conduction in an isotropic, 

homogeneous medium Ω bounded by Γ is as follows: 
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where y  and x  are the source and the field points, respectively. ( )c y  is a function 

of the solid angle of the boundary at point y . k  denotes the diffusion coefficient, 

0t  stands for the initial time and 0 0( , )u tx  is the initial condition. 

The time-dependent fundamental solution *u  is given by: 
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where Ft t    and r  represents the Euclidean distance between the source and 

the field points. 

2.2 The domain integral 

The domain integral involved in Eq. (2) can be written as: 
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The initial condition 0 0( , )u tx  is a well-behaved function. As the time step 

approaches zero, the integrand in the domain integral (the time-dependent 

fundamental solution *u ) is close to singular, its limit being a Dirac delta function [1] 

as shown in Fig. 1. It can be seen that the function *u  becomes less smooth with the 

time step decreasing. A very large yet finite value occurs at the source point as the 

time step is small. Thus these pseudo-singular domain integrals can not be accurately 

calculated by the standard Gaussian quadrature when small time step is used. 



 

Fig. 1. Variation of u* with r for several values of time steps. 

3. New method for evaluating the domain integrals 

3.1 The  , ,    transformation 

In this section, we first introduce the  , ,    transformation. The transformation is 

used in the following sub-pyramids, which is a method for solving the singular 

integrals. To construct the  , ,    coordinate system as shown in Fig. 2, the 

following mapping is used: 
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Combining Eqs.(5a)-(5b), the expression for obtaining coordinates  , ,x y z  can be 

written as: 
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The Jacobian of the transformation from the  , ,x y z  system to the  , ,    

system is 
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With the  , ,    transformation, the rapid variations of the integrand are smoothed 

out in some degree. Thus, the computational accuracy of the domain integrals can be 

improved. 

 

Fig. 2. The  , ,    coordinate transformation. 

3.2 Element subdivision 

To further improve the computational accuracy of the domain integrals, an element 

subdivision technique is proposed in this part. As shown in Fig.1, a large spike occurs 

in the integrand near the source point as the time step value is small. Thus the steep 

slopes produced by the integrand require that integration points be shifted towards the 

source point in order to calculate more accurately the integral under consideration. 

The detailed analysis is as follows. 

Firstly we study the probability density function of normal distribution 
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From Eq. (8), it can be noted that the form of the probability density function is 

 0 0 0, ,x y z

 1 1 1, ,x y z  2 2 2, ,x y z

 3 3 3, ,x y z 4 4 4, ,x y z

 , ,x y z  









almost like that of the time-dependent fundamental solution *u . As all we know, the 

integral value of Eq. (9) mainly concentrates in the interval  3 ,3  . This also 

applies similarly to the evaluation of the domain integral for the time-dependent 

fundamental solution. Then a length parameter k   is introduced, and k  is 

similar to   in the probability density function. The length parameter k   is the 

real distance in the global coordinate system, not in the local coordinate system. 

Through the above analysis, the following element subdivision technique is 

introduced as shown in Fig. 3: 

 Firstly, a cube region with the length of 2 k   is constructed to well cover the 

source point on the integration element. If the cube region beyond the boundary 

of the element, taking that of the element as the boundary of the cube region. 

 Secondly, sub-pyramids are created in cube region considering the position of the 

source point and sub-hexahedrons are constructed in the remaining regions of the 

element. 

The advantage of the proposed element subdivision technique is that more integration 

points are shifted towards the source point. Using the element subdivision technique 

coupled with the  , ,    transformation, the domain integrals can be accurately 

calculated. 

 

Fig. 3. The subdivision of hexahedron element (the source point is on the vertex of the 

element). 

4. Numerical examples 

To verify the accuracy and efficiency of our method, several examples are presented 
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in this section. The domain integrals of the following form are considered: 
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The coefficient k  in Eq. (10) is assumed to be 1 and the dimensionless parameter   

is 8. The  , ,    transformation with 15×15×15 Gaussian points is used on the 

sub-pyramids and 5×5×5 point Gaussian quadrature is used on the sub-hexahedrons. 

The numerical values obtained by our method will be compared to ‘exact’ values in 

terms of the relative error defined by 

Relative Error numerical exact
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where numericalI  and exactI  are the numerical and ‘exact’ values of the integral under 

consideration, respectively. The accuracy of exactI  is to 10-12. 

4.1 Example 1 

In this example, the domain integral of Eq. (10) is evaluated over a hexahedron 

element with the node coordinates of (-1, -1, -1), (1, -1, -1), (1, 1, -1), (-1, 1, -1), (-1, 

-1, 1), (1, -1, 1), (1, 1, 1), (-1, 1, 1) as shown in Fig.4. The coordinate of the source 

point is set at (1, 1, 1). The relative errors of various methods with different time steps 

are compared in Table 1.   represents the time step value. 5×5×5 means 

straightforward Gaussian quadrature with 5×5×5 Gaussian points. The  , ,    

transformation combined with the element subdivision technique is denoted as 

 , ,   . 

  1, 1, 1    1, 1, 1 

 1,1, 1 1,1, 1 

 1, 1,1   1, 1,1

 1,1,1 1,1,1

x

y
z



Fig. 4. The node coordinates of hexahedron element. 

A number of interesting points can be drawn from Table 1: 

 As the time step is large, accurate numerical results can be obtained by applying 

Gaussian quadrature straightforward, and better accuracy can be obtained with 

more Gaussian points. 

 The standard Gaussian quadrature becomes inefficient and inaccurate to evaluate 

the domain integral when the time step is smaller than 0.001. 

 Using the proposed method, the domain integral can be accurately and efficiently 

calculated within a wide range of the time step  . 

As illustrated in this example, when the time step is very small, the domain integrals 

can not be accurately calculated by the standard Gaussian quadrature. However, with 

our method, high computational accuracy can be obtained within a wide range of the 

time step  . 

Table 1 

Relative errors for integral I  on hexahedron element with the node coordinates of 

(-1, -1, -1), (1, -1, -1), (1, 1, -1), (-1, 1, -1), (-1, -1, 1), (1, -1, 1), (1, 1, 1), (-1, 1, 1). 

Errors less than 121 10  are indicated with a ‘-’. 

  0.1 0.01 0.001 0.0001 0.00001 

Exact 0.1249970959413 0.125 0.125 0.125 0.125 

5×5×5 1.61E-03 2.80E-01 8.97E-01 1.00E+00 1.00E+00 

10×10×10 4.31E-09 5.73E-04 9.73E-02 6.78E-01 1.00E+00 

15×15×15 - 4.16E-06 1.42E-02 7.72E-01 9.97E-01 

20×20×20 - 4.44E-09 1.48E-03 8.06E-02 1.01E-01 

30×30×30 - - 1.26E-06 1.07E-02 4.09E-01 

 , ,    1.76E-11 1.82E-08 4.45E-08 4.45E-08 4.45E-08 

4.2 Example 2 

For a more general example, different locations of the source points on the 

hexahedron elements with different shape are considered as shown in Fig.5 and Fig.6. 

The relative errors with different time steps are compared in Table 2 and Table 3. The 



coordinate in the tables is the local coordinate of the source point. 

 

Fig. 5. The node coordinates of hexahedron element. 

 

Fig. 6. The node coordinates of hexahedron element. 

Table 2 show that good results can be obtained by the method based on  , ,    

transformation considering the different positions of the source points. And the 

proposed method is not sensitive to the position of the source point. From Table 3, it 

can be seen that even the integration element with poor shape can be accurately 

calculated. 

Table 2 

Relative errors for integral I  with different position of the source points on 

hexahedron element with the node coordinates of (-1, -0.75, -0.9), (1, -0.75, -0.8), (1, 

0.75, -0.8), (-1, 0.75, -0.9), (-0.8, -0.75, 0.7), (0.6, -0.75, 0.7), (0.6, 0.75, 0.7), (-0.8, 

0.75, 0.7). Errors less than 121 10  are indicated with a ‘-’. 

  0.1 0.01 0.001 0.0001 0.00001 

(1.0, 0.0, 0.0) - 6.97E-09 2.48E-08 3.83E-08 3.91E-08 

(0.9, 0.9, 0.9) - 2.36E-09 2.92E-08 2.89E-08 4.14E-08 

(0.2, 0.4, 0.8) - 2.80E-08 2.01E-08 3.74E-08 4.34E-08 

(0.0, 0.0, 0.0) - 1.48E-09 1.68E-08 3.69E-08 3.69E-08 

 1, 0.75, 0.9  
 1, 0.75, 0.8 

 0.8, 0.75,0.7   0.6, 0.75,0.7

x

y
z

 1,0.75, 0.8
 1,0.75, 0.9 

 0.8,0.75,0.7  0.6,0.75,0.7

 1, 1, 1    1, 1, 1 

 1,1, 1 1,1, 1 

 1, 1,1   1, 1,1

 1,1,1 1,1,1






 1,1,1 1,1,1

 1, 1, 1    1, 1, 1 

 1,1, 1






 1, 1,1   1, 1,1

 1,1, 1 

 4, 1, 1    4, 1, 1 

 4,1,1 4,1,1

x

y
z

 4,1, 1

 4, 1,1

 4,1, 1 

 4, 1,1 



Table 3 

Relative errors for integral I  with different position of the source points on 

hexahedron element with the node coordinates of (-4, -1, -1), (4, -1, -1), (4, 1, -1), (-4, 

1, -1), (-4, -1, 1), (4, -1, 1), (4, 1, 1), (-4, 1, 1). 

  0.1 0.01 0.001 0.0001 0.00001 

(1.0, 0.0, 0.0) 5.73E-08 9.02E-09 4.25E-08 4.76E-08 4.45E-08 

(0.9, 0.9, 0.9) 6.34E-09 1.53E-08 3.29E-08 2.10E-08 4.19E-08 

(0.2, 0.4, 0.8) 4.81E-09 6.10E-10 2.83E-08 4.75E-08 4.45E-08 

(0.0, 0.0, 0.0) 1.13E-07 8.55E-09 3.92E-08 4.75E-08 4.45E-08 

4.3 Example 3 

In this case, the initial condition 0 0( , )u tx  is no longer assumed to be 1 and it is 

always expressed as interpolation of the shape function. So the following integrals are 

considered. 
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where N  is the shape function of the hexahedron element. 

The integration element with the node coordinates is shown in Fig.5 and the source 

point is set at (0.9, 0.9, 0.9). The relative errors with different time steps are compared 

in Table 4. 

It can be seen from Table 4 that adding the shape function to the integrant of domain 

integrals almost has no influence on the calculation accuracy. This indicates the 

 , ,    transformation is effective and it doesn’t make the well behaved function 

for instance the shape function worse. Compared with the method of calculating the 

integrals directly with 20×20×20 Gaussian points, more accurate results can be 

obtained with the proposed algorithm, and it can keep high accuracy even for very 

small time step. 

Table 4 

Relative errors for integral 1I  on hexahedron element with the node coordinates of 



(-1, -0.75, -0.9), (1, -0.75, -0.8), (1, 0.75, -0.8), (-1, 0.75, -0.9), (-0.8, -0.75, 0.7), (0.6, 

-0.75, 0.7), (0.6, 0.75, 0.7), (-0.8, 0.75, 0.7). Errors less than 121 10  are indicated 

with a ‘-’. 

  0.1 0.01 0.001 0.0001 0.00001 

Exact 0.0102024503 0.0031484778 0.0023039226 0.0023738299 0.0023748831 

20×20×20 - 1.20E-10 2.71E-03 6.00E-02 7.22E-01 

30×30×30 - - 1.33E-06 4.97E-02 9.99E-01 

 , ,    - 1.13E-08 9.01E-08 5.06E-08 4.50E-08 

4.4 Example 4 

To further demonstrate the effectiveness of the proposed method, the following 

example is presented. A cube is heated on the top face and other faces are insulated as 

shown in Fig.7. The density, heat conductivity and heat capacity are 

320 /kg m , 02 /( . )kJ m C  and 00.8 /( . )kJ kg C , respectively. The length of the cube is 

1m. A uniform temperature 0100 C  is imposed suddenly on the top face of the cube. 

The initial temperature of the cube is 00 C . In this application, the variation history of 

the temperature from 0h to 9.6h at the bottom face is concerned. To illustrate the 

accuracy of the method, numerical results are compared with the existing analytical 

solution to the considered problem as shown in Fig.8. ‘Direct Solution 0.1’ means that 

the domain integrals are evaluated using the Gaussian quadrature directly and the time 

step is 0.1h. ‘Proposed Solution 0.1’ represents that  , ,    transformation 

combined with the element subdivision technique are used for calculating the integrals 

and the time step is also 0.1h. 

In Fig.8, it can be noted that the direct solutions start to become unstable when the 

time step is less than 0.1h. This illustrates the calculation accuracy of domain integrals 

influence on stability of pseudo-initial condition method. With our method, the 

pseudo-singular domain integrals can be evaluated accurately and thus good results 

are obtained. 



 

Fig. 7. The cube is heated on the top face. 

 

Fig. 8. The temperature at the bottom face. 

5. Conclusion 

A general algorithm for the evaluation of the domain integrals which arise in 3D 

boundary element method for transient heat conduction problems was proposed in this 

paper. Employing the proposed method, the domain integrals can be effectively and 

accurately calculated. Furthermore, an element subdivision technique takes into 

account the position of the source point, the shape of the integration element and the 

relations between the size of element and the time step. Thus even the time step is 

very small, accurate results can still be obtained by our method. Accurate calculation 

of these integrals is of great importance to the successful implementation of the 

pseudo-initial condition method. Thus the stability of the analysis can be improved 

with the proposed algorithm when small time step is used. Numerical examples were 

presented and results demonstrated the accuracy and efficiency of our method. 
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	Abstract 
	In this paper, a general algorithm is proposed for evaluating domain integrals in 3D boundary element method. These integrals are involved in the solution of transient heat conduction problems when using a time-dependent boundary integral equation method named as pseudo-initial condition method. Accurate evaluation of domain integrals is of great importance to the successful implementation of this method. However, as the time-dependent kernel in the domain integral is close to singular when small time step is used, a straightforward application of Gaussian quadrature may produce large errors, and thus lead to instability of the analysis. To overcome this drawback, a coordinate transformation coupled with an element subdivision technique is presented. The coordinate transformation makes the integrand of domain integral more smooth; meanwhile, the element subdivision technique considers the relations between the size of the element and the time step. With the proposed method, more Gaussian points are shifted towards the source point, thus more accurate results can be obtained. Numerical examples demonstrate that the calculation accuracy of domain integrals and the stability of analysis for transient heat conduction problems are improved by the proposed algorithm when small time step is used. 




